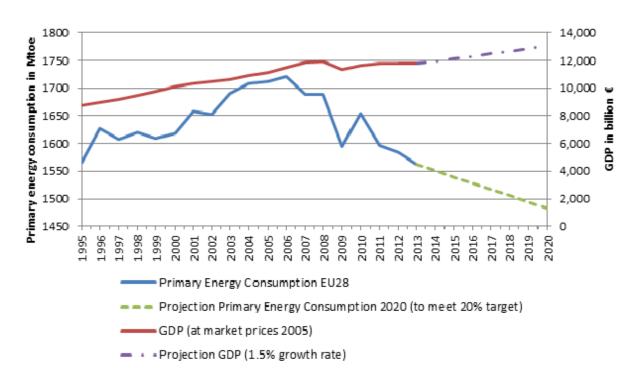


PASSIVE HOUSE - THE ROAD TO NZEB

Ten messages


THE GOALS

CURRENT GOAL

2020 20% / 20% / 20%

(reduction of energy consumption)

NEW GOAL

2030 40% / 27% / 30%

- ➤ GHG emission reductionc 40%
- ➤ Share of RES at least 27%
- Reduction of energy consumption 30% (not binding target)

OF PASSIVE HOUSE

OF PASSIVE HOUSE

"Passive House" Concept

- 1. Optimal solar gains
- 2. Super insulation
- 3. High quality windows and doors
- 4. High air tightness
- 5. Minimal thermal bridges
- 6. Ventilation with recuperation

Physical characteristics of buildings

ADDITIONAL REQUIREMENTS to Nearly Zero-Energy Building

ADDITIONAL REQUIREMENTS to Nearly Zero-Energy Building

Socio-political requirements

- 7. Cost efficiency
- 8. High share of RES
- 9. Minimal emissions of CO₂
- Socio-political aspects of «Passive House» concept
- EPBD requirements (recast of 2010)

OF NEARLY ZERO-ENERGY BUILDING

> PH physical principles

> 3 policy requirements

OF NEARLY ZERO-ENERGY BUILDING

- 1. Optimal solar gains
- 2. Superinsulation
- 3. High quality windows and doors
- 4. High air tightness
- 5. Minimal thermal bridges
- 6. Ventilation with recuperation
- 7. Cost effectiveness
- 8. High share of RES
- 9. Minimal CO₂ emissions

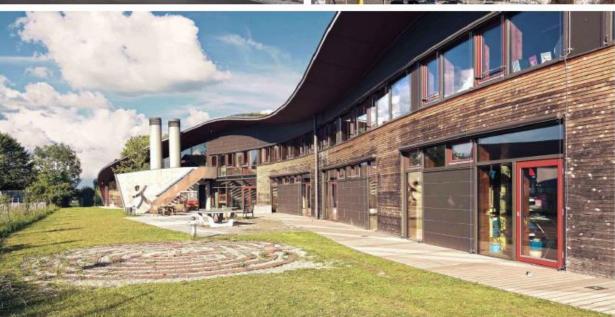
Physical characteristics of buildings

Socio-political requirements

APPLICABILITY

- different functions, climates, styles
- Passive House concept applied for various types of buildings
- Passive house concept applies in different climatic zones
- Passive house concept applies with different architectural styles

Standard 15 kWh/m².a



Passive House Standard 15 kWh/m².a

Germany Netherlands

Austria

Germany

Latvia Switzerland

Croatia

Spain

COST EFFECTIVENESS

- the leading role of integrated design

Social houses in Brussels

> Why more expensive?

COST EFFECTIVENESS

- the leading role of integrated design

The first certified PH in Pennsylvania, **USA**

Social houses

6 months construction

1400 USD / m²

No appreciation

On building level

MESSAGE 2

COST EFFECTIVENESS

- the leading role of integrated design

The first certified Passive House in Bulgaria

Kindergarten in Gabrovo

On building level

MESSAGE 2

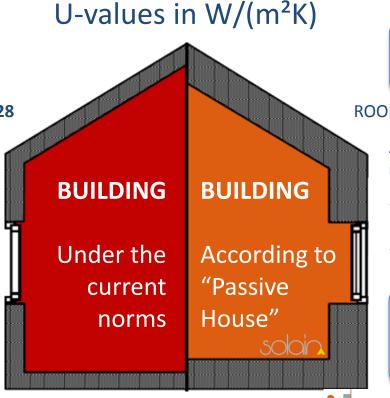
Certified Passive House Passive House Institute

COST EFFECTIVENESS

- the leading role of integrated design

INVESTMENT 370 €/m²

ROOF ≤ **0.28**


AIRTIGHTNESS $n_{50} \le 3 1/h$

WALLS ≤ **0.35**

WINDOWS ≤ 1.7

Kindergarten in Gabrovo

The first certified Passive House in Bulgaria

INVESTMENT
397 €/m²

ROOF **≤ 0.15**

AIRTIGHTNESS $n_{50} \le 0.6 \text{ 1/h}$

WALLS ≤ 0.15

WINDOWS ≤ 0.8

APPRECIATION

7,2 %

PAYBACK:

7.5 years

RENEWABLES INTEGRATION

- need of additional efforts

The leading role of integrated design

Passive House Standard

On city regional level

MESSAGE 4

PASSIVE HOUSE CONCEPT & STANDARD

- basis for cities / regions planning

Success models of frontrunners help aspiring cities

Aspiring cities have their own success models

Success Guide
- on paper and
online

On city regional level

MESSAGE 4

PASSIVE HOUSE CONCEPT & STANDARD - basis for cities / regions planning

Cezena, Italy

continuation of the first steps to passive city districts

Cadix - Antwerp, Belgium Zagreb, Croatia

On city regional lev Passata Beacons

MESSAGE 4

PASSIVE HOUSE CONCEPT & STANDARD

- basis for cities / regions planning

0-E Park, Hanover Germany

Stage 3, planned for 2019, already sold out by the end of summer 2014

INTEGRATED INDICATOR

- already in EU legislation
- Reference values vs integrated indicator
- Leading role of integrated indicator in national legislation (EPBD recast)
- Influence on the national definitions of "Nearly Zero Energy Building"

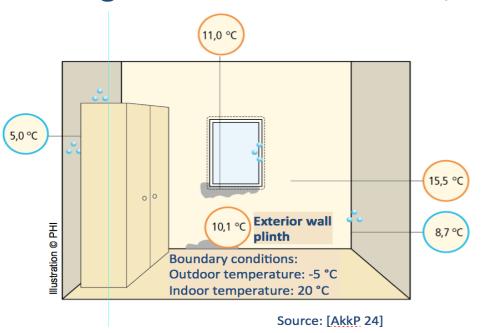
INDOOR AIR QUALITY.

THERMAL COMFORT AND

DAYLIGHT

ANALYSIS OF RESIDENTIAL BUILDING REGULATIONS
IN EIGHT EU MEMBER STATES

BPIE

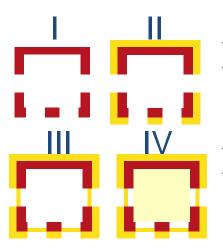

MESSAGE 6

EU LEGISLATION

- high standards for indoor comfort

Hygienic indicators / indoor air quality

Regulation for ventilation, day lighting



EU LEGISLATION

- step-by-step retrofit

Necessary to fully utilize the energy efficiency potential of existing building, when renovate

- Need of regulation of partial (step-bystep) retrofit of existing buildings
- Need of appropriate financing of partial (step-by-step) retrofit
- Stop compromise retrofit

FINANCING

- for buildings of the future

- EU funds only for very high energy efficiency (NZEB)
- National public funds to foster faster penetration of NZEB in national policies and practices
- ➤ Public funds to raise increasing private investments (Hanover: 1:12.7)

On Policy level

MESSAGE 9

COMPETENT DESIGNERS

- leading role of architects

Art Museum, Germany

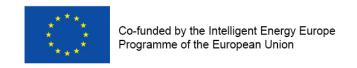
Attract prominent architects to create leading examples

From leading examples to regular design practices, based on PH concept

Social houses, Brussels

Family house, Finland

School, Germany



CAPACITY & AWARENESS

- need to accelerate the process
- At EU level: Continue Build Up Skills programme for wider scope of building specialists, incl. building designers
- At national level: Focus on BUS Roadmaps implementation
- ➤ At all levels: Communication campaigns to cover all stakeholders in building design and construction

THE PASSIVE HOUSE

KEY INSTRUMENT FOR CLIMATE PROTECTION

THE PASSIVE HOUSE
BUILDING OF A NEW
PEACEFUL WORLD

THANK YOU

