Coordinator

International Passive House Association | Germany |

www.passivehouse-international.org

Passiefhuis-Platform VZW | Belgium |

Fund Ltd | Latvia | www.lvif.gov.lv

Plate-forme Maison Passive asbl | Belgium |

EnEffect Group | Bulgaria | www.eneffect.bg

Nobatek | France | www.nobatek.com

DNA – De Niewe Aanpak | Netherlands |

Building Research Establishment Wales | United Kingdom | www.bre.co.uk

City of Zagreb | Croatia | www.zagreb.hr

End Use Efficiency Research Group, Politecnico di

Burgas Municipality | Bulgaria | www.burgas.bg

Cover photo: Nieuw Zuid development in Antwerpen | Belgium © Studio Associato Secchi-Viganò

IG Passivhaus Tyrol | Austria |

www.passiefhuisplatform.be

Environmental Investment

www.maisonpassive.be

www.dnaindebouw.nl

proKlima GbR | Germany | www.proklima-hannover.de

Milano | Italy | www.eerg.it

Municipality of Cesena | Italy | www.comune.cesena.fc.it

www.igpassivhaus-tirol.at

Passive House Institute | Germany | www.passivehouse.com

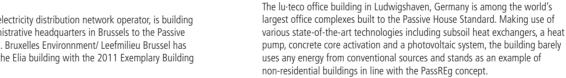
A sound investment

As Passive House buildings have a reputation for very low running costs and subsequently low CO2 emissions, they represent an ethical investment that may allow portfolio holders to differentiate themselves within the market, particularly amongst tenants with corporate social responsibility obligations and environmental agendas. High levels of quality, synonymous with the Passive House Standard, make for long lived structures and low risk investments.

The high levels of energy efficiency in such buildings help to future proof against potential changes in legislation that may call for energy improvements in existing buildings. Passive House buildings therefore stand to retain their rental value in the longer term and are more appealing to occupants due to their reduced running costs. Reduced monthly bills, in turn, lead to a reduced risk of loan defaults - an added benefit for financiers. The superior thermal comfort and indoor air quality provided by Passive House buildings serve to further increase their market value.

Elia, Belgium's electricity distribution network operator, is building their new administrative headquarters in Brussels to the Passive House Standard. Bruxelles Environnment/ Leefmilieu Brussel has acknowledged the Elia building with the 2011 Exemplary Building

Taking advantage


Taking advantage

The PassREq project calls on the experiences of regions that have implemented Passive House approaches supplied with renewables where sensible to identify the factors that allowed their success, including financial models that have been shown to be effective. The learning from these areas, in the form of success guides, regional workshops and international study tours, will help inform proven methods for delivering low energy buildings. The inclusion of real projects provides confidence to those with similar aspirations and a pathway towards implementation under local conditions and circumstances.

Building for the energy revolution

Passive House Regions with Renewable Energies

An informational pamphlet for: financiers

Passive House regions

Meeting our energy needs sustainably into the future requires nothing short of an energy revolution. In terms of our built environment, perhaps the greatest opportunity lies in the promotion of an "energy efficiency first" approach to building, supplemented by renewable energies. Several front runner regions across the EU already successfully support this approach on the basis of the Passive House Standard. Many more aspire to get on board.

By investigating what makes front runner regions so successful as well as by making their successes more accessible, the PassREg project helps aspiring regions become front runners themselves. In the examination of both regional mechanisms and individual construction case studies, a wealth of knowledge will be gleaned to support actors in optimising existing models promoting energy conscious construction and inspiring new ones.

Participating regions

Austria The Region of Tyrol

Belgium The Brussels Capital Region The City of

Antwerp

Bulgaria The City of Burgas along with the Cities of

Gabrovo, Sofia and Varna

Croatia The City of Zagreb **France** The Region of Aquitaine

Germany The Cities of Frankfurt am Main, Hanover

and Heidelberg

Italy The City of Cesena and the City of

Aglientu, The Regions of Catania, Foggia, Marche, and Pesaro and Urbino The

Government of Sicily

Latvia The Regions of Rezekne and Vidzeme with

the City of Ergli

Netherlands The Regions of Arnhem-Nijmegen and

Gelderland The Cities of Arnhem and

Nijmegen

United Kingdom The Region of Wales

Toward EU energy goals

The EU has set ambitious goals for energy performance in buildings. To meet these goals by the 2020 deadline, many are looking to the Passive House Standard for energy performance in buildings.

Passive House is the basis

An internationally recognised building energy standard, Passive House combines maximal comfort with minimal energy use and life cycle costs. Through a focus on careful planning paired with quality building components, Passive House buildings use an average of 90% less energy than typical building stock — in terms of heating, they require less than 1.5 cubic metres of gas or 1.5 litres of oil per square meter annually. Vast energy savings have also been demonstrated in warm climates where conventional buildings typically require active cooling.

Making renewables feasible

The high levels of energy efficiency reached by Passive House buildings mean that the tiny energy demand that remains can be covered, economically, by a wide variety of renewable energy sources. Such efficient buildings can also do more with the renewables placed on small surface areas — a critical aspect in urban areas where buildings often have restricted roof and facade areas.

Many Passive House buildings make use of renewable energies, e.g. through photovoltaicssysteems, toccoveer to leave in remaining cereaggy demained.

Quality assurance

Buildings, whether new build or retrofit, must perform as expected if we are to ensure sustainable energy supply into the future and improve our standard of living in so doing. Proper performance, in turn, can only be ensured if quality in design, construction and the materials chosen is taken seriously.

PassREg builds upon existing Passive House design tools as well as quality assurance procedures and certification criteria for both buildings and components. Through PassREg, these criteria are being optimised for application throughout the EU, guided in part by the monitoring results of select case studies. In addition, PassREg strengthens the appropriate quality assurance infrastructure in partner countries while driving increased availability of qualified materials and products on regional markets.

The energy balance and Passive House design tool known as the PHPP or Passive House Planning Package is perhaps the most accurate energy balance program on the market. It stands as the first step in quality planning for low energy buildings.

The Passive House Institute certifies building components in order to provide quality assurance for high performance, Passive House suitable products and make such products visible on the market. This is an example of the seal awarded to transparent components meeting Passive House criteria.

Buildings meeting Passive House energy efficiency criteria can be certified according to international Passive House criteria. For energy retrofits in which the Passive House requirements cannot be met, EnerPHit certification may be awarded. These certifications stand for quality in high performance construction.

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.

© Layout: Passive House Institute | iPHA

Training and qualification

Qualified architects, engineers and craftspeople are essential in the successful construction of high performance buildings. Such professionals form the basis of the successes seen in front runner regions having successfully implemented Passive House solutions supplemented with renewables on large scales. Indeed, one of the greatest challenges faced in this regard lies not in technical details but in the training of qualified professionals.

Through PassREg, aspiring regions are being supported in the development of long term training strategies based on the successes of front runners. Courses making use of and building on readily available material for designers and tradespeople are being translated and adapted as needed to fit regional requirements. These offerings, supplemented by a range of informational sessions and forums, will serve as the basis for the general uptake of Passive House training by educational systems as well as by the building sector throughout the EU.

Architects and craftspeople in a Brussels Passive House course are working with a 3D model to get familiar with typical features of Passive House buildings such as suitable connections between a solid wall, concrete floor slab and foundation wall. These participants are learning how to apply PU panels to the exterior wall and how to achieve a continuous, uninterrupted insulation layer between the floor (inside) and the wall (outside).

